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Abstract

We participated in three of the Protein-Protein Interaction (PPI)subtasks: Protein Interaction
Article Sub-task 1 (IAS), Protein Interaction Pairs Sub-task 2 (IPS), and Protein Interaction Sen-
tences Sub-task 3 (ISS). Our approach includes a feature detection method based on a spam-
detection algorithm. For IAS we submitted three runs from distinct classification methods: the
novel Variable Threshold Protein Mention Model, Support Vector Machines, and an integration
method based on measures of uncertainty and a nearest neighbor predictor on the eigenvector
space obtained via the Singular Value Decomposition of the feature/abstract matrix. For IPS and
ISS we used the features discovered from IAS abstracts as well as features from training IPS and
ISS data to predict appropriate passages and pairs. We also used the number of protein mentions
in a passage as a feature.

Keywords: Protein interaction, text mining, bibliome informatics, support vector machines, singular
value decomposition, spam detection, uncertainty measures, proximity graphs, complex networks.

1 Protein Interaction Article Sub-Task 1 (IAS)

1.1 Feature Selection

All three runs submitted use word features extracted from the training data using a method inspired
by the spam filtering system SpamHunting (Fdez-Riverola et al., 2007). First, we computed the prob-
ability that a word w appears on a positive pTP (w) abstract, as the ratio of the number of positive
abstracts containing w, over the total number of positive abstracts. Similarly, we computed the prob-
ability that a word w appears on a negative abstract pTN (w). After stemming with the Porter algo-
rithm, filtering out short words with 2 or less letters, and removing common stop words except the
word ”with”, we ranked all words according to the score: S(w) = |pTP (w) − pTN (w)| . The words
with the highest score S tend to be associated either with positive or negative abstracts. Therefore,
such words are assumed to be good features for classification.

1.1.1 Single Word Feature Set

The first feature set we used were the top 650 stemmed abstract words with largest S; the top 15
words are listed in table 1 in the supplemental materials (section 3 and online 1), which also includes
figure 3 depicting the 1000 abstract words with largest S in the space of pTP and pTN .

1http://informatics.indiana.edu/rocha/bc2
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1.1.2 Word Pair Feature Sets

We produced two additional feature sets comprised of word pairs obtained from the 650 stemmed
word features in the first set. This leads to 6502 = 422500 possible word pairs, though not all occur.
First, we removed all words not in the first feature set from the abstracts. Then, from the filtered
abstracts we obtain the second and third feature sets, which are comprised of pairs of words imme-
diately adjacent (bigrams) and pairs of words that occur within a window of ten words from each
other, respectively. We also computed the probability that such word pairs (wi, wj) appear in a pos-
itive or negative abstract: pTP (wi, wj) and pTN (wi, wj), respectively. Figure 4 depicts the 1800 word
pairs of the third feature set with largest: S10(wi, wj) = |pTP (wi, wj) − pTN (wi, wj)|. Table 1 in the
supplemental materials (section 3) lists the top 15 word pairs for S10.

1.1.3 Number of Protein Mentions

Using A Biomedical Named Entity Recognizer (ABNER) 2 (Settles, 2005), we extracted unique protein
mentions from abstracts. These mentions were later converted to UniProt IDs only for the IPS and
ISS tasks (see section 2); for the IAS task we used the number of unique ABNER protein mentions
per abstract a, np(a), as an additional feature or parameter.

1.2 Classification Methods

To test the various classification methods described below, we performed k-fold tests on the supplied
training data, as well as additional data from MIPS (positives) and abstracts curated by hand (neg-
atives) that were graciously donated to our team by Santiago Schnell. Based on the results of these
tests, we submitted the three runs described below.

1.2.1 Support Vector Machine Classification

Starting from the first feature set (single words with largest S) we applied additional dimensional-
ity reduction and then trained classification models to discriminate between positive and negative
data. Dimensionality reduction involved a two-step process. First, a feature selection filter based on
the t-test was used in which all features with the p-value below a pre-specified threshold tf were
retained. Then, we applied the principal component analysis (Wall et al., 2003) to retain all fea-
tures containing tPCA · σ2 of the total variance σ2. The remaining features were fed into a support
vector machine, a classification model used to maximize the margin of separation between positive
and negative examples (Vapnik, 1998). We used the SVMlight package (Joachims, 2002) in which we
explored both polynomial and Gaussian kernels with various parameters. The overall system was
trained to maximize the classification accuracy on the unlabeled data using the following two-step
iterative procedure: (i) train a classifier with costs adjusted to the current estimates of class priors in
the unlabeled data; and (ii) predict class labels on the unlabeled set using current classifier and make
new estimates of the class priors. Initially, class priors in the unlabeled data were set to 0.5. Not more
than five rounds were executed, ending with the total cost of positive examples being about 3 times
the costs of the negatives. The final predictor used tf = 0.1 for the feature filtering, tPCA = 0.95 for
the principal component analysis and a linear support vector machine.

1.2.2 Variable Trigonometric Threshold Classification

We developed trigonometric measures of term relevance on the pTP /pTN plane. It is obvious that
the best features in this plane are the ones that are closest to either one of the axis. Any feature w
is a vector in this plane (see figure 1); let α be the angle of this vector with the pTP axis. We then

2http://www.cs.wisc.edu/b̃settles/abner/
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use cos(α) as a measure of feature terms 3 mostly associated with positive abstracts, and sin(α) of
terms mostly associated with negative ones (in the training data set). Then, for every abstract a, we
compute the sum of all feature term contributions for a positive (P) and negative (N) decision:

P (a) =
∑
w∈a

cos(α(w)), N(a) =
∑
w∈a

sin(α(w)) (1)

The decision of whether abstract a is a positive or negative abstract (in so far as being relevant for
protein-protein interaction) is then computed as:{

a ∈ TP, if P (a)
N(a) ≥ λ0 + β−np(a)

β

a ∈ TN, otherwise
(2)

where λ0 is a constant threshold for deciding whether an abstract is positive (relevant) or not. This
threshold is subsequently adjusted for each abstract a with the factor (β − np(a))/β, where β is
another constant, and np(a) is the number of protein mentions in abstract a as described in section
1.1.3. We observed that abstracts have a higher chance of being positive (relevant) with more protein
mentions, thus, via formula 2, the classification threshold is linearly decreased as np increases. This
means that with a high (lower) number of protein mentions, it is easier to classify an abstract as
positive (negative). When np(a) = β the threshold is simply λ0. We refer to this classification method
as Variable Trigonometric Threshold (VTT).

IAS subtask (PPI)
Spam Model (words, bigrams and 10-word 

window)
TP

3536
TN

1959

( ) { }
TPa

TP
awa

wpTP ∈
∈

= ,
|

( ) { }
TNa

TN
awa

wpTN ∈
∈

= ,
|

w

α

( ) ( )
( ) ( )wpwp

wpw
TNTP

TP
22

cos
+

=α

( ) ( )
( ) ( )wpwp

wpw
TNTP

TN
22

sin
+

=α

Figure 1: Trigonometric measures of term relevance
for identifying positive and negative abstracts in the
PTP and PTN plane.

The specific value of λ0 was determined by
optimizing the F-Score measure4 on the train-
ing data as well as on the additional abstracts
obtained from MIPS and hand curated. To de-
cide on the best β we computed the probabil-
ity that a positive abstract a in the training set
contains more than np protein mentions: pos =
p(TP |np). We also computed the negative coun-
terpart: neg = p(TN |np). We observed that
when np ≥ 7, we maximize pos − neg, thus we
set β = 7. This way, when np(a) > 7 the deci-
sion threshold is lowered, and raised otherwise.
Figures 5 and 6 in the supplemental materials
(section 3) depict this study. Finally, the run we
submitted with VTT used the following parame-
ters: λ0 = 1.7 and β = 7, using the top 650 word-pair features of the third feature set (section 1.1.2).
This combination of parameters resulted in the best F-Score values for the training and additional
data.

1.2.3 Classification with Singular Value Decomposition Plus Uncertainty Integration

We first classified the set of abstracts using a nearest neighbor classifier on the eigenvector space
obtained via the Singular Value Decomposition (SVD) (Wall et al., 2003) of the feature/abstract space.
We used the first feature set of single word features (section 1.1.1). We represented abstracts as vectors
in this feature space. We then calculated the inverse document frequency measure (IDF), so the
vector coefficients were the TF*IDF (Dumais, 1990) for the respective features. The number of protein
mentions per abstract a, np(a) (section 1.1.3), was added as an additional feature. The abstract vectors
were also normalized to Euclidean length 1. We computed the SVD of the resulting abstract-feature

3By term, we refer to features in our three different feature sets as described in section 1.1.
4F-measure is defined as F = 2·Precision·Recall

Precision+Recall
, where Precision is the proportion of abstracts returned that are relevant

(positive), and Recall is the proportion of relevant abstracts that are retrieved.
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matrix (from the training data). The top 100 components were retained (this number provided best
results on our tests on training and additional data). To classify a test abstract vector a, we project it
onto this SVD subspace and calculate the cosine similarity measure of a to every training abstract t:

cos(a, t) =
a.t

||a|| × ||t||
(3)

We then calculate positive and negative scores for each test abstract a by summing the cosine measure
for every positive (t ∈ TP ) and negative (t ∈ TN ) training abstract, respectively:

P (a) =
1

|TP |
∑

t∈TP

cos(a.t), N(a) =
1

|TN |
∑

t∈TN

cos(a.t) (4)

where |TP | and |TN | are the number of positive and negative abstracts in the training data, respec-
tively. Finally, a linear decision boundary was determined in the two-dimensional space of P and N :
abstract a is classified as positive (relevant) if P (a) > m · N(a) + b and as negative otherwise. Co-
efficients m and b were determined manually from optimizing the F-Score measure on the training
data as well as on the additional abstracts obtained from MIPS and hand curated. Figure 7 in the
supplemental materials (section 3) depicts the boundary surface in the P and N space.

Using a variation of a method we previously used (Maguitman et al., 2006), we integrated three
variations of the VTT classification (section 1.2.2) with the SVD classification in such a way that for
each abstract the most “reliable” prediction was used to issue a classification. To ascertain reliability,
we represented the target test abstract a, as well as all abstracts t in the training data, as vectors in a
compound feature space (including all three feature sets described in section 1.1). Next, we computed
the cosine similarity, cos(a, t), between a target a and every t, and treated this value as a weighted
vote. Thus, if abstract t is very close to a, it will have a greater influence in the classification of a.
Since for any abstract t in the training data, we know if a classification method correctly classified it,
we tried two different measures or reliability:

• Entropy-Based Measure: As in (Maguitman et al., 2006), we used Shannon’s entropy to com-
pute the uncertainty of a prediction for the target abstract based on the distribution of positive
and negative weighted votes obtained for that abstract from a given classification method.

Let ρM (a, TP ) and ρM (a, TN) be the probabilities of predicting TP or TN , respectively, as the
class for abstract a using method M . We estimate these probabilities as follows:

ρM (a, TP ) =
∑

t∈TP cos(a, t)∑
t∈TP∪TN cos(a, t)

, ρM (a, TN) =
∑

t∈TN cos(a, t)∑
t∈TP∪TN cos(a, t)

.

Note that ρM (a, TP ) = 1 − ρM (a, TN). Finally, we compute the prediction uncertainty of
abstract a using method M , UM (a), using Shannon’s entropy as follows:

UM (a) = −ρM (a, TP ) log ρM (a, TP )− ρM (a, TN) log ρM (a, TN)

Using the uncertainty measure we integrate the predictions issued by each method by selecting,
for each abstract a, the prediction issued by the method M with lowest UM (a)

• Misprediction Measure: We used the information about correct predictions available from the
training set to compute a misprediction rate from each classification method; each neighbor t of
the target abstract a contributed to a method’s rate based on its weighted vote.

Assume T is the training set of abstracts, and IM ⊆ T be the set of abstracts that has been
misclassified using method M . Let µM (a) be the misprediction rate for abstract a based on the
weighted votes for a from abstracts t ∈ IM :

µM (a) =
∑

t∈IM cos(a, t)∑
t∈T cos(a, t)
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Using this misprediction rate we integrate the predictions issued by each method by selecting,
for each abstract a, the prediction issued by the method M with lowest µM (a)

Finally, we calculated the product of the Entropy-Based Measure and the misprediction Measure
and selected, for each target test abstract a, the prediction coming from the classification method with
lowest product. In our submission for run 3, we used this uncertainty-driven integration with the
following four classification methods:

1. SVD Vector model with first feature set of single words.

2. Fixed Threshold Classification (FT). This is the same as the VTT classification (section 1.2.2) but
without trigonometric measures. In this case, instead of the formulae 1, we simply used:

P (a) =
∑
w∈a

pTP (w), N(a) =
∑
w∈a

pTN (w) (5)

We also did not use the ABNER protein mention counts, thus formula 2 becomes simply P (a)/N(a) >
λ0 = 1.3. In this case, we also used the first feature set of single words.

3. VTT exactly as described in section 1.2.2, but with the second feature set (bigrams) and λ0 = 1.5
and β = 7.

4. VTT exactly as described in section 1.2.2.

SVD

VTT-bi

Figure 2: Our methods on the accuracy vs. AUC
plane for IAS. Mean and Median are for the set of
all submissions from all groups. Red squares de-
note our three submissions (SVM, VTT, and SVD-
UI). The orange polygon denotes the results for
SVD alone, and the orange oval denotes the re-
sults for one of the versions of VTT (with bigrams)
included in the SVD-UI method.

Items 2 to 4 were chosen so that there would be
a model for each of the three feature sets. The spe-
cific parameters were chosen from the F-score per-
formance with the learning and additional data. It is
important to notice that in our tests, the uncertainty-
driven integration algorithm (SVD-UI) improved
only very slightly over the SVD vector model alone.
Indeed, for the test set the SVD vector model alone
produced the same classification as the integration
method, except that different rankings of abstracts
were attained. We decided to submit the results of
the integration method because it slightly improved
on the SVD vector model with the learning data.

1.3 Results

The performance of the three runs we submitted (sec-
tions 1.2.1, 1.2.2, and 1.2.3) can be seen in Table 2
of the supplemental materials (section 3). The three
runs produced similar results regarding the F1 mea-
sure (F-Score), with the highest value (0.75) for Run 2
(VTT, section 1.2.2), and lowest (0.73) for Run 3 (SVD-
UI, section 1.2.3). However, this measure hides the
distinct capabilities of each method. Indeed, the SVM
method resulted in the best recall and worst precision
(0.88/0.64), whereas the VTT method resulted in the worst recall and best precision (0.79/0.71). The
SVD-UI method lies in between the other two (0.8/0.68), though its F-Score measure is slightly worse.

Perhaps a better measure for this task is accuracy, which gives us the ratio of correct predictions
(for both positive and negative abstracts). In this case, the VTT method yielded the best result (0.74),
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followed by the SVD-UI (0.71), and the SVM (0.69) methods. Thus, the VTT method lead to a more
balanced prediction for both positive and negative abstracts, leading to the lowest error rate (0.26).

When we look at the Area Under the ROC Curve (AUC) measure, however, the results have yet
another reading. This measure can be understood as the probability that for a randomly picked
positive abstract and a randomly picked negative abstract, the positive abstract is ranked above the
negative one. We obtained very good results with this measure for the SVM run (0.8), followed by
good results for the VTT (0.76) and SVD-UI (0.71) methods. Contrasting accuracy with AUC, we
observe that while the VTT method lead to our highest accuracy, the probability of finding a false
positive closer to the top of the rank (or a false negative closer to the bottom of the rank) is larger
than in the ranking produced by the SVM method (see figure 8). This situation was even worse with
the SVD-UI method, as can be seen in figure 9, where many negative (positive) abstracts appear deep
in the positive (negative) side of the decision surface. Conversely, while the SVM method lead to our
lowest accuracy measure, it yielded the highest AUC, which indicates that a larger proportion of its
erroneous decisions were closer to its decision surface.

As we discuss in section 1.2.3, the SVD vector model alone produced the same classification as
SVD-UI, except that different rankings of abstracts were attained. We note that the AUC of the SVD
method alone was lower3(0.68) than that of the AUC-UI method (0.71). We can thus say that the
integration method improved the AUC of the SVD method alone. However, it produced worse AUC
and accuracy values for other constituent methods, such as VTT as submitted in Run 2. Indeed, the
AUC and accuracy of the not submitted individual methods included in the uncertainty integration
method (section 1.2.3), show that constituent method 3, a version of VTT method using bigrams,
produces a higher AUC (0.79) than the VTT we submitted and the SVD-UI method, without sac-
rificing accuracy much (0.73). This means that the integration method did worse than some of its
constituents, and that the VTT method can produce better results. A comparison of all our methods
in the AUC/Accuracy plane is depicted in Figure 2. The figure also contrasts our results with the
central tendency of all group submissions. The most salient points are:

• Accuracy: All three runs are above the mean and median values of accuracy for all teams. Run
2 (VTT) yielded an accuracy above one standard deviation of the mean accuracy.

• AUC: Both the SVM and VTT methods are above the mean and median value of AUC, but the
SVM method is very nearly above one standard deviation above the mean.

• Balance across all performance measures: The VTT method was the only one which was above
the mean for all measures tested (precision, recall, F-score, accuracy, and AUC).

2 Protein Interaction Pairs And Sentences Sub-Tasks (IPS AND ISS)

2.1 Feature Selection

From the IAS subtask, we collected the top 1000 word-pair features, (wi, wj) from the third feature set
(section 1.1.2). Since the purpose of these tasks is to identify portions of text where protein-protein-
interaction (PPI) information appears, we do not need to worry about features indicative of negative
PPI information. Features are chosen and ranked according to high value of:

p(wi, wj) = pTP (wi, wj).cos(α(wi, wj)) =
p2

TP (wi, wj)√
p2

TP (wi, wj) + p2
TN (wi, wj)

(6)

where pTP and pTN are as defined in section 1.1. We multiply the cosine measure by the probabil-
ity of the feature being associated with a positive abstract, to ensure that features which have zero
probability of being associated with a negative abstract (there are many), are not equally ranked with
p(wi, wj) = 1. We refer to this set of 1000 stemmed word pairs, as the word pair feature set.
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We also obtained an additional set of features from PPI-relevant sentences: the sentence feature
set. These sentences were extracted from the various files provided by Biocreative for these tasks We
collected all sentences that contained PPI, and calculated the frequency of stemmed words in this
collection: fppi(w). Then we calculated the frequency of stemmed words of the entire corpus: fc(w).
Finally, similarly to the word pair features above, we selected as sentence features the top 200 words
which maximize the following score (top 10 listed in Table 3.):

SS =
f2

ppi(w)√
f2

ppi(w) + f2
c (w)

(7)

2.2 Paragraph Selection and Ranking

We used our two feature sets plus protein mention information to select the paragraphs in each
document which are more likely to contain PPI information. Thus, for each full text document, we
ranked paragraphs according to three different criteria:

A Largest sum of word pair feature weights (section 2.1), where the weights are the inverse feature
rank. Paragraphs without feature matches are thrown out (rank 0).

B Largest number of protein mentions in paragraph. As in the IAS subtask (see section 1.1.3), we
also used ABNER to collect protein mentions in the full text documents provided for these two
subtasks. Paragraphs without protein mentions are thrown out (rank 0).

C Largest number of sentence features in paragraph (section 2.1). Each feature that occurs in a
paragraph adds 1 to the count. Paragraphs without feature matches are thrown out (rank 0).

From these three distinct paragraph rankings, for each document, we produced another three
rankings that aim to integrate this information in different ways. For each document, we rank para-
graphs according to the following criteria:

1. Rank product of ranks produced in A (word pair features) and B (protein mentions) above.

2. Rank product of ranks produced in B (protein mentions) and C (sentence features) above.

3. Rank product of ranks produced in A, B, and C above.

Since paragraphs thrown out in A, B and C are rank 0, in this step, only paragraphs with feature
matches and protein mentions remain. The resulting 3 rankings constitute the paragraph rankings in
the three runs submitted for the IPS subtask: 1, 2, and 3, respectively.

2.3 Mapping of Protein Mentions to UniProt IDs

To obtain the actual protein-protein interaction pairs contained in the paragraphs of ranks 1,2, and
3 described in section 2.3, we had to convert the textual mentions obtained with ABNER to UniProt
IDs. Protein and gene references identified using the ABNER system were mapped to UniProt IDs
through exact matching with either a gene or a protein name occurring in SwissProt—considering
both primary names and synonyms. UniProt version 8.2 was used for the mapping; this is not the
most current version and could have resulted in missing relevant mappings. These mappings were
then filtered using the provided UniProt subset. This process typically resulted in many UniProt
IDs for the same ABNER protein mention, mostly because the same protein name maps to different
UniProt IDs for different organisms. We therefore filtered the protein mention to include only UniProt
ID mappings associated with organisms in the set of MeSH terms of a given article. Unfortunately,
many of the articles listed several organisms in their MeSH keyterms. An obvious improvement
would be to detect the appropriate organism for a given paragraph more specifically.
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2.4 Selection and Ranking of Protein-Protein Interaction Pairs for IPS

Finally, for the IPS task, we returned all the combinations of protein pairs (UniProt accession numbers
as described in section 2.3) occurring in the same sentence—for sentences included in the paragraphs
of ranks 1,2, and 3 (section 2.2). For a given document (PMID), the rank of each protein-protein
interaction pair is the rank of the highest ranked paragraph in which the pair occurs in a sentence.
We submitted three distinct rankings of PPI pairs according to the three ranks 1,2, and 3 (section 2.2).

2.5 Protein Mention Feature Expansion with Proximity Networks

We used a method we employed in the first Biocreative competition to obtain additional, contextu-
alized features associated with a protein names (Verspoor et al., 2005), that is, additional features
which are relevant in a specific document, but not necessarily in the whole corpus. We computed for
each document a word proximity network based on a co-occurrence proximity measure of stemmed
words in paragraphs of that document:

WPP (wi, wj) =

m∑
k=1

(ri,j ∧ ri,j)

m∑
k=1

(ri,j ∨ ri,j)
(8)

where ri,j ∈ {0, 1} is an element of the relation R : P × W ; P is the set of all m paragraphs in
a document, and W is the set of all n stemmed words. This yields a proximity network for each
document, where the nodes are words wi, and the edges are the WPP (wi, wj) proximity weights.

Next, for every PPI pair (obtained by rank 1) occurring in a given document, we obtain the words
closest to the protein labels in the network. Notice that these protein labels are words identified by
ABNER for the given PPI pair, and they appear on the proximity network as regular nodes. For
each protein pair we selected the 5 stemmed words (nodes) in the proximity network with largest
minimum proximity to both protein names. The sentences in the articles where the PPI pairs occur
were then augmented using the 5 words obtained from the relevant document.

2.6 Passage Extraction and ISS Submission

From ranked paragraphs, we selected passages (sets of 3 sentences) containing a given PPI pair.
Finally, we submitted three runs to the ISS subtask:

1. Passages ranked by largest number of occurring word pair features (see section 2.1).

2. Passages ranked by largest number of occurring word pair features, but where the PPI occur-
ring sentence is expanded with words from the document’s proximity network.

3. Same as 2, with the addition of the following factor 100/paragraph rank 1 (see section 2.2) to
the number of features found in the passage.

2.7 Results

The results for the IPS and ISS tasks were disappointing, though in line with the central tendency of
all submissions. Our three submitted runs to IPS were hardly distinguishable. For all our three runs,
the precision was below the mean and median of all submissions, but still well within one standard
deviation of the mean. On the other hand, recall was above the mean and median of all submissions,
and above one standard deviation of the mean. The F-score was very near the mean and median of
all submissions. These results were true for both the identification of protein-protein interaction pairs
(PPIN) and single interactors (PN), as well as for the set of all articles (All) and the subset of articles
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containing exclusively SwissProt interaction pairs (SP). Figure ?? in the supplemental materials lists
the specific values.

Regarding the ISS subtask, the three submitted runs were slightly different, and denoted a slight
improvement with the number of the run. Run 2 was better than run 1, which shows that the prox-
imity expansion improved a little the original features. Run 3 was better than run 2, showing that
considering the paragraph rank from IPS (which includes number of protein mentions) in addition
to the expanded word-pair features is advantageous. Again our results were in line with the aver-
aged values of all submissions. Our matches (387) and unique matches (156) to previously selected
passages were above the average of all submissions (207.46 and 128.62, respectively). We should
notice, however, that we predicted many more passages (18371) and unique passages (5252) than
the average (6213.54 and 3429.65, respectively), which lead to lower than average fractions of correct
from predicted and unique passages. Like in the IPS case, this means that our system was better at
recall than at precision. Finally, our mean reciprocal rank of correct passages substantially higher
than average (0.66 to 0.56). Table 4 in the supplemental materials lists the specific values.
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3 Supplemental Materials

Table 1: Top 15 words and pairs

Top 15 words for S Top 15 pairs for S10

w PTP PTN S wi, wj PTP PTN S10

interact 0.76 0.12 0.64 with,interact 0.31 0.03 0.28
bind 0.63 0.14 0.49 interact,protein 0.21 0.02 0.19

domain 0.52 0.08 0.44 with,protein 0.25 0.12 0.13
complex 0.46 0.15 0.31 with,domain 0.14 0.01 0.13
between 0.01 0.29 0.28 interact,domain 0.13 0.01 0.12

with 0.9 0.65 0.25 bind,protein 0.15 0.03 0.12
activ 0.56 0.32 0.24 interact,between 0.12 0.01 0.11
yeast 0.28 0.04 0.24 protein–domain 0.12 0.01 0.11

between 0.38 0.16 0.22 bind–domain 0.11 0.01 0.1
associ 0.35 0.13 0.22 bind–with 0.11 0.01 0.1

protein 0.86 0.64 0.22 with–complex 0.12 0.02 0.1
region 0.26 0.06 0.2 associ–with 0.14 0.05 0.09

suggest 0.45 0.25 0.2 thi–interact 0.09 0.01 0.08
function 0.48 0.28 0.2 with–activ 0.1 0.04 0.06

regul 0.38 0.19 0.19 activ–protein 0.1 0.04 0.06

Table 2: IAS Results

Run 1 (SVM) Run 2 (VTT) Run 3 (SVD/Int) Mean* StDev* Median*
Total Predictions 750

Total Positive 375
Total Negative 375

True Positives (TP) 330 295 300
False Positives(FP) 186 118 143

True Negatives (TN) 189 257 232
False Negatives (FN) 45 80 75

Precision 0.64 0.71 0.68 0.66 0.08 0.68
Recall 0.88 0.79 0.8 0.76 0.19 0.85

Accuracy 0.69 0.74 0.71 0.67 0.06 0.67
F-Score 0.74 0.75 0.73 0.69 0.10 0.72
FP Rate 0.5 0.32 0.38
TP Rate 0.88 0.79 0.8

Error Rate 0.31 0.26 0.29
AUC 0.8 0.76 0.71 0.74 0.07 0.75

*calculated from 51 runs submitted by 19 teams
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Table 3: Top 10 stemmed word features from training sentences

rank feature
1 with
2 protein
3 cell
4 interact
5 bind
6 activ
7 express
8 complex
9 dna
10 human

Table 4: ISS Results

Average Run 1 Run 2 Run 3
Predicted Passages 6213.54 18385 18371 18371

Pred. Unique Passages 3429.65 5156 5270 5252
Matches 207.46 360 376 387

Unique Matches 128.61 131 145 156
Fraction Correct 0.047 0.02 0.021 0.021

Frac. Unique Correct 0.047 0.025 0.028 0.03
Mean Rec. Rank 0.557 0.659 0.625 0.642
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Table 5: Summary of results of IPS task, including our three submissions and the central tendency values for
all submissions. Results are shown both for the identification of protein-protein interaction pairs (PPIN) and
single interactors (PN), as well as for the set of all articles (All) and the subset of articles containing exclusively
SwissProt interaction pairs (SP).

PN All PN SP
Precision Recall F-score Precision Recall F-score

Run 1 0.125 0.419 0.173 0.141 0.444 0.192
Run 2 0.125 0.419 0.173 0.141 0.444 0.192

Articles Run 3 0.127 0.418 0.174 0.143 0.442 0.193
Mean 0.159 0.287 0.175 0.174 0.306 0.192
Stdv 0.08 0.125 0.068 0.085 0.131 0.076

Median 0.155 0.278 0.173 0.171 0.306 0.192
Run 1 0.161 0.54 0.222 0.178 0.561 0.242
Run 2 0.161 0.54 0.222 0.178 0.561 0.242

Articles with Predictions Run 3 0.164 0.543 0.225 0.183 0.565 0.246
Mean 0.228 0.379 0.244 0.248 0.405 0.267
Stdv 0.137 0.131 0.11 0.143 0.138 0.119

Median 0.21 0.385 0.236 0.233 0.414 0.257
Run 1 0.122 0.424 0.189 0.088 0.446 0.147
Run 2 0.122 0.424 0.189 0.088 0.446 0.147

Overall Interactor Run 3 0.123 0.423 0.19 0.089 0.445 0.148
Mean 0.203 0.2648 0.198 0.15 0.283 0.171
Stdv 0.129 0.123 0.08 0.096 0.129 0.076

Median 0.182 0.252 0.192 0.134 0.272 0.168

PPI All PPI SP
Precision Recall F-score Precision Recall F-score

Run 1 0.033 0.221 0.057 0.035 0.235 0.061
Run 2 0.033 0.221 0.057 0.035 0.235 0.061

Overall Run 3 0.034 0.221 0.059 0.036 0.235 0.062
Mean 0.102 0.115 0.085 0.094 0.106 0.078
Stdv 0.094 0.076 0.055 0.088 0.07 0.051

Median 0.065 0.118 0.077 0.061 0.11 0.071
Run 1 0.051 0.275 0.072 0.056 0.285 0.077
Run 2 0.051 0.275 0.072 0.056 0.285 0.077

Average Run 3 0.052 0.278 0.073 0.057 0.288 0.078
Mean 0.116 0.2 0.113 0.106 0.186 0.113
Stdv 0.104 0.106 0.084 0.095 0.1 0.084

Median 0.081 0.216 0.084 0.076 0.196 0.084
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Figure 3: Top 1000 words in the space of PTP (horizontal axis) and PTN (verticlaxis). Words with high S tend
to be almost exclusively associated with positive or negative abstracts.

Figure 4: Top 1800 word pairs (in 10 word wondows) in the space of PTP (wi, wj) and PTN (wi, wj). Word
pairs with high S10 tend to be almost exclusively associated with positive or negative abstracts.
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Figure 5: Probability that an abstract, from the learning set, with np or more protein mentions is positive
(blue). Same for negative (red). Proportion of abstracts with np or more protein mentions (green).

Figure 6: Probability that a positive abstract in the learning set has more than np protein mentions (blue).
Same for negative (red). Difference (green).
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N(a)

P(
a)

Figure 7: Decision boundary for vector/SVD model on the space of positive and negative scores P and N .
Red and green dots represent negative and positive abstracts in the learning data set, respectively. Blue dots
represent test set abstracts.
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Figure 8: Decision boundary for VTT method on the space of the ratio of positive to negative scores P (a)/N(a)
and the number of protein mentions np(a). Red and blue circles represent negative and positive abstracts in
the test data set, respectively.
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Figure 9: Decision boundary for vector/SVD model on the space of positive and negative scores P and N .
Red and green triangles represent negative and positive abstracts in the test data set, respectively.




